Rational use of blood and blood components in a Tertiary Care Hospital: A Crosssectional study.

Rupali Chordia Dr
Dr RAjendra Gode Medical College, rupali.chordia3@gmail.com

Dr Himani Shemar Dr
DR Rajendra Gode Medical College, drhimani52@gmail.com

Follow this and additional works at: https://rescon.jssuni.edu.in/djcm

Part of the Diseases Commons, Health Information Technology Commons, Medical Education Commons, Medical Sciences Commons, Medical Specialties Commons, Mental and Social Health Commons, Psychiatry and Psychology Commons, and the Public Health Education and Promotion Commons

Recommended Citation

This Original Research is brought to you for free and open access by Research Connect. It has been accepted for inclusion in Digital Journal of Clinical Medicine by an authorized editor of Research Connect.
Rational use of blood and blood components in a Tertiary Care Hospital: A Crossectional study.

Abstract

Abstract:

Introduction: Blood transfusion is a life saving process and a complex phenomenon. Judicial use of blood and its components is the need of the hour. Objectives: The present study was planned with the objective to assess the appropriateness of blood transfusions in patients admitted in the hospital as per WHO guidelines. Materials and Methods: A crossectional study was conducted at tertiary care hospital for a period of one and a half years. Records of patients from blood bank were evaluated to collect data. MS Excel was used to enter the data and IBM SPSS Statistics for Windows (version 20.0) was used to analyse the data.

Results: Overall prevalence rate of appropriate use of blood component is 62.63%. Conclusions: Retrospective audits are effective tool to increase rational use of blood by identifying areas requiring intervention to change transfusion practice

Keywords
Blood transfusion, packed cell volume, Fresh frozen plasma, whole blood

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Rational use of blood and blood components in a Tertiary Care Hospital: A Cross-sectional study.

Abstract:

Introduction: Blood transfusion is a life saving process and a complex phenomenon. Judicial use of blood and its components is the need of the hour. Objectives: The present study was planned with the objective to assess the appropriateness of blood transfusions in patients admitted in the hospital as per WHO guidelines. Materials and Methods: A cross-sectional study was conducted at tertiary care hospital for a period of one and a half years. Records of patients from blood bank were evaluated to collect data. MS Excel was used to enter the data and IBM SPSS Statistics for Windows (version 20.0) was used to analyse the data. Results: Overall prevalence rate of appropriate use of blood component is 62.63%. Conclusions: Retrospective audits are effective tool to increase rational use of blood by identifying areas requiring intervention to change transfusion practice

Keywords: Blood transfusion, packed cell volume, Fresh frozen plasma, whole blood

Introduction

Transfusion Medicine is a complex process that depends not only on the knowledge and skills of professions but also of entire team and efficiency of the system. Adverse events associated with blood transfusions is on rise and there are several factors which may contribute to in increasing the chances of patient suffering transfusion related complications. These factors include the type of component being transfused, the characteristics and final diagnosis of the patient, the use of inadequate equipment, inconsistent intravenous solutions, inadequate procedures and errors or omissions on the part of the team that provides care to the patient (clerical errors), in particular, in the identification of the patient and blood samples. Majority of countries have specific legislations regulating transfusion medicine in their countries and regions to increase
the safety of blood transfusions like RDC 57/ANVISA \(^2\) and ordinance 1353/MS \(^3\) in Brazil, the British red blood transfusion guidelines in the United Kingdom \(^4\), the council of Europe Resolutions, recommendations and Convention in the Cotton Market \(^5\) and Blood Transfusion Safety of the World Health Organization.\(^6\) These are all examples of recommendations and guidelines aimed at improving blood transfusion safely. The present study was planned with the objective to assess the appropriateness of blood transfusions in patients admitted in the hospital as per WHO guidelines.

Materials and Methods: A hospital based observational study was conducted at Tertiary care hospital for a period of one and a half years. The blood requisition forms collected from the records during the study period were used to record sociodemographic profile, clinical diagnosis of patients, complete blood counts before transfusion and component of blood transfused. The indication of transfusion of blood components was evaluated using WHO guidelines for blood transfusion. The following are the WHO guidelines\(^7\) for transfusion of blood components.

Whole blood-

- Indicated only in massive bleeding.
- Exchange transfusions
- Where red cell concentrates are not available.

Hb trigger for Red Cell Concentrates-

- \(<7\text{g/dl}\) if there are signs of impaired oxygen transport and lower thresholds in sickle cell anemia or iron deficiency
- \(7-8\text{g/dl}\) pre operative and for surgery associated with major blood loss.
- \(<9\text{g/dl}\) in chronic transfusion regime or marrow suppressive therapy.
• <10g/dl-not appropriate unless specific indications acute blood loss>30-40% of blood volume.

Platelet count trigger for transfusion

• <10,000x10³/µl -as prophylaxis in bone marrow
• <20,000x10³/µl -BM failure with risk factors, fever, systemic hemostatic failure
• <50,000x10³/µl- massive hemorrhage, pts undergoing surgery or invasive procedures, DIC
• <100x10³/µl- -brain or eye surgery
• Any bleeding patient if thrombocytopenia is a major contributing factor
• Any platelet count in inherited or acquired platelet function disorders depending on clinical features and findings.

FFP trigger for transfusion

PT and PTT are more than 1.5 times the upper limit of normal range- DIC, warfarin overdose, bleeding and abnormal coagulation parameters, pts with liver disease or undergoing cardiac bypass surgeries.

The exclusion criteria for the study was as follows

1. The records from which detailed information was not obtained were excluded from the study.
2. The cases who were not admitted to our tertiary hospital were excluded from study
3. The following blood products were not be included in the study-leucocyte poor red cell concentrate, granulocyte concentrate, single donor plasma, cryo-poor plasma, albumin, factor VIII conc. factor IX, immunoglobulins.

MS Excel was used to enter the data and IBM SPSS Statistics for Windows (version 20.0) was used to analyse the data.

Results:
A hospital based cross sectional study was conducted to assess the rational use of blood and blood products in a tertiary care hospital. A total of 2630 records were selected for assessment as per exclusion criteria. Table 1 shows age gender wise and age wise distribution of study participants. There were more number of females i.e. 59.8% (1573) as compared to males (40.2%; 1057). Majority of the patients 1133 (43.1%) were in the age group of 21-40 years followed by 657 (24.9%) in the age group of 1-20 years, 508 (19.3%) in the age group of 41-60 years, 270 (10.2%) in the age group of 61-80 years, 32 (1.2%) in the age group of 80-100 years and 30 (1.14%) in < 1 year of age. Figure 1 shows distribution of study participants according to transfused blood components. Packed red blood cells were mainly used for transfusion 9009 (74.9%) while the usage of Whole Blood was 2180(18.1%). The usage of platelet concentrate was 22(0.18%), platelet rich plasma 317(2.63%) and fresh frozen plasma was 486 (4.04%).
Table 2 shows distribution of transfused bold components according to hemoglobin levels. Of the total 12,014 units of Transfused Components, Packed RBCs (6221) was maximally utilised in 55.2% patients who had <7 gm% of haemoglobin (1451) followed by whole blood in the same group of patients. 7-10 (gm%) Hb group consisted of 36.3% patients (955) who received mostly PRBCs. 10-13gm% Hb group included 7.8% (204patients) again received PRBCs maximum followed by 13-18gm%Hb group of 0.8% consisting of 20 patients also received PRBCs maximally. Mean Hemoglobin was of 6.8gm% in the study group.

Table 3 shows distribution of transfused blood components according to Hematocrit levels. Of the 12,014 units of Transfused Components, Packed RBCs followed by WB was used maximally in 47.6%of patients having <20% of hematocrit. 43.5% of patients had a hematocrit in the range of 21-40%, 0.3% in 41-60% and 0.6% patients in the range of 61-80%.7.9% of patients were not investigated.

Table 4 shows distribution of transfused blood components amongst preoperative patients. Of the 539 Pre-operative patients, 116 patients had Hb <7gm% and they received 428 units of Packed RBCs, 294 patients had Hb in the range of 7-10gm% and received 613 units of Packed RBCs . Patients in the range of 10-13gm% of Hb also received mostly 204 units of Packed RBCs.

Table 5 shows distribution of transfused blood components amongst postoperative patients. Of the 124 Post-operative patients, 28 patients had Hb <7gm% and they received 72 units of Packed RBCs, 65 patients had Hb in the range of 7-10gm% and
received 125 units of Packed RBCs. 28 Patients in the range of 10-13gm% of Hb also received mostly 58 units of Packed RBCs and 10 patients with Hb range of 13-18% received 24 units of Packed RBCs.

Figure 2 shows distribution of transfused blood components according to Prothrombin time. Of the 33 patients who were investigated with Prothrombin Time 19 were in the range of 15-24 secs, 14 were in the range of 25-34 secs and 2597 patients were not investigated. 198 units of Fresh frozen plasma was given in patients with the range of 15-24 sec followed by 147 units in patients with a range of 25-34sec. 41 and 22 units of platelet rich plasma was given in patients whose range was in 15-24sec and 25-34sec respectively.

Discussion:

In the present study there was maximum utilization of packed cell component (74.9%), which is comparable to findings from other studies like Ahmed M et al (74.5%); Alcantara JC et al (78.2%); Sharma et al (81.3%) but different from findings of Ambroise et al (34.5%). The present study shows Packed Cell component transfusions having highest appropriateness followed by Fresh Frozen Plasma according to the WHO guidelines for Blood Transfusion and these findings are comparable with the findings of the study of Gomathi G, et al. High inappropriateness was found in Platelet concentrates. The reason for inappropriateness of Platelet concentrate maybe that although trigger values indicated platelet transfusion clinically but the patient did not have any episode of bleeding or was stable.
Regarding patients with decreased platelet counts maximum were given the diagnosis as anemia as they had lower hemoglobin levels also.

Patients diagnosed as anemia, having low platelet counts (range 10000/μl – 98000/μl) were given Packed Red Blood Cells. The inappropriateness of Packed RBCs again may be due to the clinical condition of patient and not according to the trigger values for Hb%

The present study showed appropriate use of whole blood as 62% which is less than study of Sharma R et al10 (80.35%) and Gomathi G et al12 (91%).

Conclusion: It is concluded that there is increasing trend of usage of blood component instead of whole blood and overall prevalence rate of appropriate use of blood component is 62.63%. Retrospective audits are effective tools to increase rational use of blood by identifying areas requiring intervention to change transfusion practice. Each hospital must develop its own guidelines both for routine and emergency services on the basis of National policy and implement the same through the hospital transfusion committee to ensure effective blood utilization. Awareness program of rational use of blood should be conducted regularly.

References:

Table 1: Sex and age-wise distribution of study participants

<table>
<thead>
<tr>
<th>GENDER</th>
<th>NUMBER OF PATIENTS</th>
<th>PERCENTAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MALE</td>
<td>1057</td>
<td>40.2%</td>
</tr>
<tr>
<td>FEMALE</td>
<td>1573</td>
<td>59.8%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2630</td>
<td>100%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AGE GROUPS (YEARS)</th>
<th>NUMBER OF PATIENTS</th>
<th>PERCENTAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td><1 YEAR</td>
<td>30</td>
<td>1.14%</td>
</tr>
<tr>
<td>1-20</td>
<td>657</td>
<td>24.9%</td>
</tr>
</tbody>
</table>
Table 2: Distribution of blood components according to levels of Haemoglobin

<table>
<thead>
<tr>
<th>HB RANGE (total patients-2630)</th>
<th>WB</th>
<th>PRBCs</th>
<th>PLC</th>
<th>PRP</th>
<th>FFP</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td><7gm%(1451)</td>
<td>1464</td>
<td>6221</td>
<td>10</td>
<td>16</td>
<td>78</td>
<td>7789</td>
</tr>
<tr>
<td>7-10gm%(955)</td>
<td>580</td>
<td>2431</td>
<td>0</td>
<td>163</td>
<td>309</td>
<td>3483</td>
</tr>
<tr>
<td>10-13gm%(204)</td>
<td>129</td>
<td>324</td>
<td>12</td>
<td>138</td>
<td>99</td>
<td>702</td>
</tr>
<tr>
<td>13-18gm%(20)</td>
<td>07</td>
<td>33</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>40</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2180</td>
<td>9009</td>
<td>22</td>
<td>317</td>
<td>486</td>
<td>12,014</td>
</tr>
</tbody>
</table>

Table 3: Distribution of transfused blood components according to Hematocrit range
<table>
<thead>
<tr>
<th>HCT RANGE (No. of patients investigated- 2421)</th>
<th>WB</th>
<th>PRBCs</th>
<th>PLC</th>
<th>PRP</th>
<th>FFP</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td><20%(1252)</td>
<td>1160</td>
<td>5086</td>
<td>10</td>
<td>125</td>
<td>177</td>
<td>6558</td>
</tr>
<tr>
<td>21-40%(1145)</td>
<td>805</td>
<td>3307</td>
<td>12</td>
<td>192</td>
<td>309</td>
<td>4625</td>
</tr>
<tr>
<td>41-60%(8)</td>
<td>0</td>
<td>35</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>35</td>
</tr>
<tr>
<td>61-80%(16)</td>
<td>0</td>
<td>49</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>49</td>
</tr>
</tbody>
</table>

Table 4: Distribution of transfused blood components amongst preoperative patients.

<table>
<thead>
<tr>
<th></th>
<th><7gm% 116 pts</th>
<th>7-10gm% 294 pts</th>
<th>10-13gm% 137 pts</th>
<th>13-18gm% 7pts</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>WB</td>
<td>188</td>
<td>242</td>
<td>106</td>
<td>7</td>
<td>543</td>
</tr>
<tr>
<td>PRBCs</td>
<td>428</td>
<td>613</td>
<td>204</td>
<td>0</td>
<td>1245</td>
</tr>
<tr>
<td>PLC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PRP</td>
<td>0</td>
<td>0</td>
<td>87</td>
<td>0</td>
<td>87</td>
</tr>
<tr>
<td>FFP</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>616</td>
<td>855</td>
<td>397</td>
<td>7</td>
<td>1875</td>
</tr>
</tbody>
</table>
Table 5: Distribution of transfused blood components amongst postoperative patients

<table>
<thead>
<tr>
<th></th>
<th><7gm% 28pts</th>
<th>7-10gm% 65 pts</th>
<th>10-13gm% 28pts</th>
<th>13-18gm% 10 pts</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>WB</td>
<td>39</td>
<td>71</td>
<td>6</td>
<td>7</td>
<td>123</td>
</tr>
<tr>
<td>PRBCs</td>
<td>72</td>
<td>125</td>
<td>58</td>
<td>24</td>
<td>279</td>
</tr>
<tr>
<td>PLC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PRP</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FFP</td>
<td>0</td>
<td>69</td>
<td>48</td>
<td>0</td>
<td>117</td>
</tr>
<tr>
<td>TOTAL</td>
<td>111</td>
<td>265</td>
<td>112</td>
<td>31</td>
<td>519</td>
</tr>
</tbody>
</table>
Fig 1. Distribution of study participants according to transfused blood components

![Frequency of Transfused Blood Components](image)

Frequencies of Transfused Blood Components

- Whole Blood
- Packed Cell Volume
- Platelet Concentrate
- Platelet Rich Plasma
- Fresh Frozen Plasma

Fig 2: Distribution of transfused blood components according to Prothrombin time
Transfused Components with Prothrombin Time (PT)

- No. Of patients investigated - 33
- 0-14(0)
- 15-24(19 patients)
- 25-34 (14 patients)